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A method is proposed for evaluating fuzzy rules in-
dependently of each other in their optimization. It is
derived by extending the conventional method called
α-FUZZI-ES so as to cope with facts (inputs) given by
fuzzy sets (non-singletons). A method is further pro-
posed for fuzzy rules learning based on the evaluation
method. It attains fast fuzzy-rules learning by opti-
mizing fuzzy rules independently of each other in par-
allel. The proposed method is effective especially when
evaluation functions for fuzzy rules learning are not
differentiable and then derivative-free optimization is
required. Numerical results indicate that the learning
method achieves proper convergence with derivative-
free optimization.

Keywords: fuzzy inference, fuzzy rules learning, fast op-
timization, parallel processing, derivative-free optimiza-
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1. Introduction
Parallel fuzzy inference provides an effective scheme

to represent complex nonlinear systems with a number
of fuzzy rules. The fuzzy rules have been often opti-
mized by learning algorithms. Especially when evaluation
functions for fuzzy rules learning are not differentiable,
derivative-free methods are adopted, including genetic al-
gorithms, particle swarm optimization, and artificial im-
mune systems. Conventional methods for fuzzy rules
learning have applied such optimization methods by using
functions for evaluating overall performance of fuzzy sys-
tems. As the number of fuzzy rules increases, the search
space of their optimal parameters becomes larger. It en-
tails the deceleration of convergence speed in fuzzy rules
learning.

In order to solve the problem mentioned above,α-
FUZZI-ES (α-weight-based fuzzy-rule independent eval-
uations) has been proposed for evaluating fuzzy rules
independently of each other [1]. Moreover,α-FUZZI-
ES learning (α-FUZZI-ES-based fuzzy-rule learning) has
been proposed for fuzzy rules learning by the effective
use ofα-FUZZI-ES [1]. It can optimize fuzzy rules in-
dependently of each other in parallel. Thereby, it at-
tains fast fuzzy-rules learning with parallel processing.
α-FUZZI-ES learning also reduces the dimensionality of

the solution space for finding the optimal fuzzy rules and
thus it makes the convergence speed fast in fuzzy rules
learning. α-FUZZI-ES learning is effective for tuning
each fuzzy rule with derivative-free optimization espe-
cially when the evaluation functions are not differentiable
and then derivative-based optimization methods cannot be
applied. It provides a way to tune fuzzy rules indepen-
dently of each other even with derivative-free optimiza-
tion. α-FUZZI-ES learning, however, requires the con-
dition that facts (inputs) are given by singletons and an-
tecedent fuzzy sets form a strong fuzzy partition.

This paper proposes a method to solve the above-
mentioned problem by extendingα-FUZZI-ES so as to
cope with facts given by fuzzy sets in the meaning of non-
singletons. The proposed method is namedα-FUZZI-EX
(α-weight-based fuzzy-rule independent evaluations ex-
tended for fuzzy inputs) in this paper. A method is fur-
ther proposed for attaining fast fuzzy-rules learning by ap-
plying α-FUZZI-EX. It is namedα-FUZZI-EX learning
(α-FUZZI-EX-based fuzzy-rule learning) in this paper.
Numerical results demonstrate the proper convergence in
fuzzy rules learning with derivative-free optimization and
facts given by fuzzy sets (non-singletons).

2. Definitions and Preliminaries
For the following discussions, some definitions and

preliminaries are presented. Further details of each are
described in [2–4].

Definition 1 When a convex fuzzy setA in the universe of
discourseX is defined by a continuous membership func-
tion µA(x) (x ∈ X) and itsα-cuts (also calledα-level sets)
are all bounded,the reference point x◦A of A is defined by
using itsα-cutAα as follows:

x◦A =
xℓα + xu

α
2

, α = max
x

µA(x), . . . . . . (1)

wherexu
α andxℓα denote the least upper and the greatest

lower bounds ofAα , respectively.

Definition 2 Suppose that a convex fuzzy setA in the uni-
verse of discourseX is defined by a continuous member-
ship functionµA(x) (x∈X) and itsα-cuts are all bounded.
The fuzzy setA is symmetric if and only if the following
equation holds:
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xℓα + xu
α

2
= x◦A, ∀α ∈ (0,αmax], αmax= max

x
µA(x). (2)

Here,xu
α andxℓα denote the least upper and the greatest

lower bounds of theα-cut Aα of A, respectively. The
symbolx◦A represents the reference point ofA. A convex
fuzzy set is calledasymmetric if and only if Eq. (2) does
not hold.

Definition 3 Thegeneralized meanM({x j, p j};ω) is de-
fined by

M({x j, p j};ω) =











n

∑
j=1

p jx
ω
j

n

∑
j=1

p j











1
ω

, x j > 0, p j > 0, (3)

wherex j denotes a real number in the universe of dis-
course andp j represents a real number used for the weight
of x j. The symbolω denotes a real number to determine
the property of the mean [2,3].

3. Independent Evaluations of Each Fuzzy
Rule and Their Use for Fuzzy Rules
Learning

This section first introduces parallel fuzzy inference for
the following discussions. Then, methods are proposed
for evaluating fuzzy rules independently of each other and
for fuzzy rules learning.

3.1. Parallel Fuzzy Inference
This paper treats the parallel fuzzy inference in the

form below:

Rule 1: If x is P1 theny is Q1.
Rule 2: If x is P2 theny is Q2.

...
...

Rulen: If x is Pn theny is Qn.
Given fact:x is P̃.

Consequence:y is Q̃.

Here,Pj and P̃ denote fuzzy sets in the universe of dis-
courseX , whereasQ j and Q̃ represent fuzzy sets in the
universe of discourseY . In particular,Pj in the antecedent
part of the fuzzy rule is calledan antecedent fuzzy set,
whereasQ j in the consequent part of the fuzzy rule is
calleda consequent fuzzy set. In this paper,Pj, Q j, and
P̃ are all defined by normal and convex fuzzy sets and
their reference points are placed in[0,1]. The member-
ship functions ofPj, Q j, P̃, and Q̃ are respectively de-
noted byµPj (x), µQ j(y), µP̃(x), andµQ̃(y), wherex ∈ X
andy ∈ Y . For convenience in the following discussions,
the j-th fuzzy rule is represented byR j.

3.2. Mathematical Derivation of a Method for
Independent Evaluations of Each Fuzzy Rule

In this section, a method is proposed for evaluating
fuzzy rules independently of each other in fuzzy rules
learning, especially with facts given by fuzzy sets (non-
singletons). It is derived in a way that extendsα-FUZZI-
ES. α-FUZZI-ES is effectual only under condition that

facts are given by singletons and antecedent fuzzy sets
form a strong fuzzy partition. The validity of the proposed
method is mathematically proven.

For the following discussions, suppose that the condi-
tions below are satisfied:
(1a) Learning data are given by the input–output pairs

(P̂k, Q̂k) (k = 1,2, . . . ,nd), whereP̂k andQ̂k respec-
tively denote the input and output fuzzy sets of the
learning data.

(2a) The valueEk of an evaluation function for optimiz-
ing fuzzy rules with(P̂k, Q̂k) satisfies the condition
thatEk ≥ 0. In this paper, the smaller value ofEk in-
dicates higher performance in fuzzy rules learning.

(3a) The compatibility degree ˜p jk betweenPj and P̂k is
normalized as shown below:

p̌ jk =
p̃ jk

n

∑
j=1

p̃ jk

. . . . . . . . . . . . (4)

In particular, ˜p jk is defined by

p̃ jk = sup
x
[µP̂k

(x)∧µPj (x)], . . . . . . (5)

whereµP̂k
(x) denotes the membership function ofP̂k

and∧ represents the minimum operation.
Note thatPj andP̃ can be multi-dimensional fuzzy sets in
the following discussions.

From Eq. (4), the equation below holds obviously:
n

∑
j=1

p̌ jk = 1. . . . . . . . . . . . . . . (6)

The valueE of the evaluation function for all the learn-
ing data in fuzzy rules optimization can be formulated by
using Eq. (6) as follows:

E =
nd

∑
k=1

Ek =
nd

∑
k=1

[

Ek

n

∑
j=1

p̌ jk

]

=
n

∑
j=1

[

nd

∑
k=1

Ek p̌ jk

]

=
n

∑
j=1

e j,

(7)where

e j =
nd

∑
k=1

Ek p̌ jk. . . . . . . . . . . . . . (8)

Let L j be defined by
L j = {(P̂k, Q̂k) | p̃ jk > 0, k = 1,2, . . . ,nd}. . . (9)

For the following discussions,L j is represented by

L j = {(P̂jk′ , Q̂ jk′)}, k′ = 1,2, . . . ,nd, j, . . . . (10)

wherend, j represents the number of the learning data in
L j. Because ˇp jk = 0, k ∈ {k′′ | (P̂k′′ , Q̂k′′) 6∈ L j}, Eq. (8)
turns to

e j =

nd, j

∑
k′=1

E jk′ p̌ jk′, . . . . . . . . . . . . (11)

whereE jk′ denotes the valueEk′ of the evaluation function
used in optimizingR j with the learning data(P̂jk′, Q̂ jk′).

In Eq. (11),E jk′ p̌ jk′ is in the form ofE jk′ weighted by
p̌ jk′. Such weighting on the basis of compatibility degrees
is calledα-weighting [1]. The value of ˇp jk′ indicates the
degree to whichP̂jk′ belongs toPj. From these view-
points, it can be considered that ˇp jk′ divides out the value
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of E jk′ among the adjacent fuzzy rules ofR j. Therefore,
the value ofe j can be regarded as the evaluation value of
R j. The values ofe j ( j = 1,2, . . . ,n) can be obtained inde-
pendently of each other. This property makes it possible
to calculate the values ofe j ( j = 1,2, . . . ,n) in parallel and
leads to fast computing in fuzzy rule evaluations.

The above-mentioned method for fuzzy rule evalua-
tions is namedα-FUZZI-EX (α-weight-based fuzzy-rule
independent evaluations extended for fuzzy inputs) in this
paper. α-FUZZI-ES is a special case ofα-FUZZI-EX.
α-FUZZI-EX is equivalent toα-FUZZI-ES under the fol-
lowing conditions [1]:

(1b) The antecedent fuzzy setsPj ( j = 1,2, . . . ,n) form
a strong fuzzy partition. Namely, the following
equation is satisfied:

n

∑
j=1

µPj (x) = 1. . . . . . . . . . . (12)

(2b) The inputs of learning data are given by singletons.

Unlike α-FUZZI-ES, α-FUZZI-EX allows to cope with
facts given by fuzzy sets (non-singletons) and does not
require the antecedent fuzzy sets to form a strong fuzzy
partition ofX .

3.3. Fuzzy Rules Learning Based onα-FUZZI-EX
In this section, a fast method is proposed for fuzzy rules

learning by the effective use ofα-FUZZI-EX. The follow-
ing equation holds becauseE jk′ ≥ 0 andp̌ jk′ ≥ 0:

e j ≥ 0, j = 1,2, . . . ,n. . . . . . . . . . (13)
As can be found from Eqs. (7) and (13),E is obtained
by the summation of the positive or zero values given
by e j. Accordingly, E can be minimized by decreas-
ing each value ofe j ( j = 1,2, . . . ,n). As discussed in
Section 3.2, the values ofe j ( j = 1,2, . . . ,n) can be cal-
culated independently of each other. Therefore, fuzzy
rules can be tuned independently of each other in paral-
lel for their global optimization by minimizing the each
value of e j ( j = 1,2, . . . ,n). α-FUZZI-EX attains fast
fuzzy-rules learning with hardware in parallel including
GPGPUs (general-purpose graphics processing units) and
many-core CPUs (central processing units).

In order to evaluateR j, the value ofe j is calculated by
using the numbernd, j of the learning data inL j as shown
in Eq. (11). When each fuzzy rule is required to be eval-
uated per one learning data, the following definition of
fuzzy rule evaluation can be used on behalf ofe j:

ē j =
e j

nd, j
. . . . . . . . . . . . . . . . (14)

The above-mentioned fuzzy-rules learning on the ba-
sis of α-FUZZI-EX is namedα-FUZZI-EX learning
(α-FUZZI-EX-based fuzzy-rule learning) in this paper.
α-FUZZI-EX learning inherits the practically impor-
tant properties ofα-FUZZI-ES learning including above-
mentioned fast computing with hardware in parallel. The
other properties are as follows:α-FUZZI-EX learning
provides a self-governing scheme of each fuzzy rule in its
optimization. It is effective especially when evolutionary

algorithms are adopted for optimizing fuzzy rules inde-
pendently of each other.α-FUZZI-EX learning can re-
duce the dimensionality of the solution space for finding
the optimal fuzzy rules. These inherited properties are de-
tailed in [1].

In the case where learning data with singleton inputs
are given and antecedent fuzzy sets form strong fuzzy par-
tition of X , α-FUZZI-EX learning provides exactly the
same performance asα-FUZZI-ES learning. This is be-
causeα-FUZZI-ES is a special case ofα-FUZZI-EX as
described in Section 3.2 and thenα-FUZZI-EX learning
is equivalent toα-FUZZI-ES learning in the case.

4. Application of α-FUZZI-EX learning
to Interval Prediction

α-FUZZI-EX learning is applied to interval prediction
for demonstrating its performance.α-GEMII (α-level-set
and generalized-mean-based inference with the proof of
two-sided symmetry of consequences) [2–4] is adopted
because it is effective to represent prediction intervals by
its deduced consequences.

4.1. α-GEMII Specialized for Triangular
Membership Functions

α-GEMII is applied to interval prediction, wherein
Q j ( j = 1,2, . . . ,n) are optimized byα-FUZZI-EX learn-
ing. In the use ofα-GEMII, antecedent and consequent
fuzzy sets are set to be symmetric and are defined by tri-
angular membership functions for convenience in interval
prediction. The following specializes the operations inα-
GEMII for triangular membership functions. The opera-
tional steps in the general form ofα-GEMII are described
in [2,3].

Under the condition thatPj, Q j, and P̃ are normal
and are defined by triangular membership functions,α-
GEMII can deduce consequences in the form of normal
fuzzy sets defined by triangular membership functions. In
the following discussion, note that the core of a fuzzy set
is a singleton and is equal to its reference point when the
fuzzy set is defined by a triangular membership function.
Because a triangular membership function can be param-
eterized by its core and support,α-GEMII deduces only
the core and support of the consequence by the effective
use of itsα-cut based scheme [5]:
Deduction of cores: The coreyQ̃c of Q̃ is deduced by

yQ̃c = M({yQc
j
, p̃ j};1). . . . . . . . . . (15)

Here,yQc
j
denotes the core ofQ j. Moreover, ˜p j represents

the compatibility degree betweeñP andPj.
Deduction of supports: The least upper boundyu

Q̃
and

greatest lower boundyℓ
Q̃

of the supportQ̃ of Q̃ are de-

duced by
yu

Q̃ = M({yu
Q j

+(1− yQ̃c), p̃ j}; ω)− (1− yQ̃c), (16)

yℓQ̃ = M({yℓQ j
− yQ̃c, p̃ j}; ω)+ yQ̃c, . . . . (17)

whereyu
Q j

andyℓQ j
represent the least upper and the great-

est lower bounds of the supportQ
j

of Q j, respectively.
The functionM({x j, p j};ω) is defined by
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M({x j, p j};ω) = 1−M({1− x j, p j};ω). . . (18)

The operation withM is calledthe dual operation of M in
this paper. The value ofω determines the support width
of Q̃. In the general form ofα-GEMII, the value ofω
is automatically controlled on the basis of the relation
betweenP̃ andPj ( j = 1,2, . . . ,n) in fuzzy constraints [3].
In this paper, the value ofω is fixed to 1 for applying
α-GEMII to interval prediction. Thereby,̃Q is determined
only by Q

j
( j = 1,2, . . . ,n) and it can easily be used as a

prediction interval after optimizingQ
j
( j = 1,2, . . . ,n).

Whenω = 1, Eqs. (19) and (20) respectively turn to

yu
Q̃ = M({yu

Q j
, p̃ j}; 1), . . . . . . . . . (19)

yℓQ̃ = M({yℓQ j
, p̃ j}; 1). . . . . . . . . . (20)

The scheme ofα-GEMII for triangular membership func-
tions is detailed in [2–5].
4.2. Coverage-Width-Based Criterion

Prediction intervals are required to be estimated so that
they include observed data ˆyk (k = 1,2, . . . ,nd) while their
widths are reduced to a great extent. In order to evaluate
the prediction intervals, CWC (coverage-width-based cri-
terion) was proposed in [6]. This study utilizes CWC for
optimizingQ

j
( j = 1,2, . . . ,n) for interval prediction with

α-GEMII. The supportQ̃ of Q̃ is treated as a prediction
interval.

The numerical indexECWC of CWC is defined by the
following equations:

ECWC =
w

σ(c,η ,a)
, (21)

w =
1

ndW

nd

∑
k=1

(ỹu
k − ỹℓk), (22)

c =
1
nd

nd

∑
k=1

ck, (23)

σ(c,η ,a) =
1

1+ e−η(c−a)
. (24)

In Eq. (22), ˜yu
k and ỹℓk respectively denote the least upper

and the greatest lower bounds of the prediction interval.
The symbolW represents the width ofY that is to be
the space for ˆyk. Eq. (22) gives the normalized mean
prediction interval width (NMPIW). The symbolck in
Eq. (23) is defined by

ck =

{

1, ŷk ∈ [ỹℓk, ỹ
u
k],

0, otherwise.
. . . . . . . . . (25)

The value ofc in Eq. (23) presents the probability of
the observed data included in the prediction intervals.
It is called the prediction-interval coverage probabil-
ity (PICP). Because Eq. (23) includes the operation for
counting the number of the observed data in the predic-
tion interval, it is a step function and thereforeECWC is not
differentiable.
4.3. An Artificial Immune System for Interval

Prediction with α-FUZZI-EX learning
For constructing prediction intervals, fuzzy rules are

optimized with an artificial immune system (AIS) [7, 8].

In the following, an AIS is specialized to the case where
prediction intervals are constructed byα-GEMII on the
basis ofα-FUZZI-EX learning. For basic studies,Q j ( j =
1,2, . . . ,n) are defined by symmetric fuzzy sets. Suppose
that the values ofyQc

j
( j = 1,2, . . . ,n) are precisely opti-

mized in advance and only the support widths ofQ j ( j =
1,2, . . . ,n) are to be tuned with the AIS for interval pre-
diction. Thereby, it is easier to confirm the effectiveness
of α-FUZZI-EX learning with CWC because the effect of
the quality in optimizing the cores is eliminated.

In the AIS, antibodiesAb ji ( j = 1,2, . . . ,n; i =
1,2, . . . ,nAb) are the candidates of the support width
of Q j. As the fuzzy rules are optimized independently
of each other in the same way, the process of the AIS
for tuning the support width ofQ j is representatively
presented in the following:

Step 1: Initialize Ab ji (i = 1,2, . . . ,nAb) with random
numbers.

Step 2: EvaluateAb ji (i = 1,2, . . . ,nAb) usingECWC.
Step 3: Clone all antibodiesAb ji (i = 1,2, . . . ,nAb). The

clones ofAb ji are represented byC jik (k = 1,2, . . . ,nc).
Step 4: MutateC jik (i = 1,2, . . . ,nAb; k = 1,2, . . . ,nc) by

adding a random number whose magnitude is propor-
tional to the value ofECWC of Ab ji. The mutation is
performed so as to make the support of the consequent
fuzzy set included inY . The probabilities of making
the support width of the consequent fuzzy set larger
and smaller are equal.

Step 5: EvaluateC jik (i = 1,2, . . . ,nAb; k = 1,2, . . . ,nc)
usingECWC.

Step 6: SelectnAb candidates with high performance
in the evaluation byECWC from Ab jk and C jik (i =
1,2, . . . ,nAb; k = 1,2, . . . ,nc).

Step 7: Replace the antibodiesAb ji (i = 1,2, . . . ,nAb) by
the candidates selected in Step 6.

Step 8: Return to Step 3 if the predetermined termination
condition is not satisfied; otherwise finish the process.

5. Simulations: Interval Prediction by Using
α-FUZZI-EX Learning

Numerical results are presented to demonstrate the per-
formance ofα-FUZZI-EX learning via its application to
interval prediction. In order to clarify the effectiveness
in contrast to conventional methods, a non-differentiable
function for evaluating fuzzy rules is adopted and facts are
given by fuzzy sets (non-singletons).

5.1. Simulation Conditions
The simulations are performed under the following

conditions:

(i) The numbern of fuzzy rules is 21. The antecedent
fuzzy setPj and the consequent fuzzy setQ j of R j
are symmetric. They are defined by triangular mem-
bership functions that satisfy Eq. (12). The cores
xc

j ( j = 1,2, . . . ,n) of Pj ( j = 1,2, . . . ,n) are respec-
tively placed atx= 0.05( j−1) ( j = 1,2, . . . ,n). In the
simulations,Pj ( j = 1,2, . . . ,n) are fixed and are not
adjusted for basic studies. Only the support widths of
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Fig. 2. Numerical learning data.

Q j ( j = 1,2, . . . ,n) are optimized by usingα-FUZZI-
EX learning.

(ii) The input–output pairs(x̂k, ŷk) (k= 1,2, . . . ,nd) of nu-
merical learning data are generated by the following
equations:

ŷk = q(x̂k)+ rk, k = 1,2, . . . ,nd , (26)

q(x) =−3.2(x−0.5)2+0.9, (27)

whererk denotes the additional noise.Fig. 1 depicts
the functionq(x). In order to confirm thatα-FUZZI-
EX learning leads to the proper optimization of fuzzy
rules for interval prediction,q(x) is defined so as to
have some shapes. As can be found inFig. 1, q(x) has
convex, increasing, and decreasing parts. The number
nd of the numerical learning data is 151. The values
of x̂k (k = 1,2, . . . ,nd) are placed at equal intervals
in [0,1]. The value ofrk is given by a uniform ran-
dom number for a feasibility study and is generated
in [−0.05,0.05]. Fig. 2 shows the numerical learn-
ing data generated under the above-mentioned con-
ditions. In order to confirm the proper convergence
in fuzzy rules optimization byα-FUZZI-EX learn-
ing with facts given by fuzzy sets (non-singletons),
the input ˆxk of the numerical learning data is trans-
formed to the fuzzy set (non-singleton)̂Pk. Here,
P̂k (k = 1,2, . . . ,nd) are symmetric and their member-
ship functions are triangular. Their cores are set to
x̂k (k = 1,2, . . . ,nd), respectively. The support width
of P̂k is 0.05.

(iii) As described in Section 4.3, the values ofyQc
j
( j =

1,2, . . . ,n) are set byq(xc
j ) ( j = 1,2, . . . ,n), respec-

tively. The widths ofQ
j
( j = 1,2, . . . ,n) are adjusted

independently of each other by using the AIS. The
numbernAb of antibodies for each consequent fuzzy
set is 5. The antibodies are initialized by uniform ran-
dom numbers in[0,0.2]. The numbernc of clones of
each antibody is 5. The antibodies and the clones
are evaluated by usingECWC. The values ofW , η ,
anda are set to 1.0, 20.0, and 1.0, respectively. The
mutation process for each clone is shown in the fol-
lowing: The values ofECWC for evaluatingAb ji and
C jik (i = 1,2, . . . ,nAb; k = 1,2, . . . ,nc) are normalized
with their maximum value in optimizing the width of
Q

j
. The normalized value is denoted býECWC. Each

clone is mutated in the way that the value ofÉCWCrmt is
added to or subtracted from the least upper or greatest
lower bounds ofQ

j
, wherermt is a uniform random

number in[0,r∗mt]. The value ofr∗mt is adjusted so that
the same process as the mutation withr∗mt on behalf
of ÉCWCrmt makes the least upper bound ofQ

j
equal to

1 and/or its greatest lower bound equal to 0 under the
condition thatQ j is symmetric in the range[0,1] of Y .
Thereby, the mutation is performed so as to makeQ

j
included in the range[0,1] of Y . The AIS is iteratively
performed until 500 generations.

5.2. Numerical Results
The prediction intervals in some generations are shown

in Fig. 3. They are deduced byα-GEMII with P̂k (k =
1,2, . . . ,nd) given as facts.Fig. 3(a) depicts the predic-
tion intervals deduced with the initial fuzzy rules that are
generated by using random numbers as described in Sec-
tion 5.1.Fig. 3(b) shows the prediction intervals deduced
in the first generation. Subsequently,Figs. 3(c)-(f)show
the prediction intervals deduced in the other generations.
The number of generations is indicated below each of the
figures. As can be found inFigs. 3(b)-(f), α-GEMII de-
duces the prediction intervals so that the numerical learn-
ing data are included in the intervals while the widths of
the intervals are reduced to a great extent along with the
generations.

The transitional changes ofECWC in the learning are de-
picted inFig. 4. As can be found from the figure, the val-
ues ofECWC converge to small values along with the gener-
ations. AlthoughFig. 4 presents the transitional changes
of CWC until 30 generations, it is confirmed that the val-
ues ofECWC further decrease in 500 generations.

From the above discussions,α-FUZZI-EX learning
makes fuzzy rules properly converge. Therefore, it is
found to be effective even when facts are given by fuzzy
sets (non-singletons).

6. Conclusion
A method has been proposed for evaluating fuzzy rules

independently of each other. It is derived by extending
α-FUZZI-ES so as to cope with facts given by fuzzy sets
(non-singletons). The proposed method has been named
α-FUZZI-EX in this paper. This paper has further pro-
posed a method for fuzzy rules learning on the basis ofα-
FUZZI-EX. The method provides a way to optimize fuzzy
rules independently of each other in parallel. It has been
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Fig. 3. Transitional changes in interval prediction by usingα-FUZZI-EX learning andα-GEMII.
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Fig. 4. Transitional changes of CWC.

named α-FUZZI-EX learning in this paper. α-FUZZI-
EX learning attains fast fuzzy-rules learning by parallel
processing hardware including GPGPUs and many-core
CPUs.α-FUZZI-EX learning is effective especially when
evaluation functions for fuzzy rules learning are not dif-
ferentiable and then the derivative-based methods cannot
be applied to the independent optimization of each fuzzy
rule. As each fuzzy rule can evaluate itself and can self-
govern in its optimization withα-FUZZI-EX learning, it
is useful to apply evolutionary algorithms for optimizing
fuzzy rules independently of each other. Such scheme of
α-FUZZI-EX learning also contributes to reducing the di-
mensionality of the solution space for finding the optimal
fuzzy rules. It makes the convergence speed fast in fuzzy
rules learning.

In simulations,α-FUZZI-EX learning has been applied
to interval prediction. In order to show its effectiveness,
it optimizes each fuzzy rule with CWC that is represented
by a non-differentiable function. Facts are given by fuzzy

sets (non-singletons) to demonstrate the performance of
α-FUZZI-EX learning in contrast toα-FUZZI-ES learn-
ing. Numerical results have shown thatα-FUZZI-EX
learning leads to proper convergence in constructing the
prediction intervals.
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