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A method is proposed for evaluating fuzzy rules in-
dependently of each other in their optimization. It is
derived by extending the conventional method called
a-FUZZI-ES so as to cope with facts (inputs) given by
fuzzy sets (non-singletons). A method is further pro-
posed for fuzzy rules learning based on the evaluation
method. It attains fast fuzzy-rules learning by opti-
mizing fuzzy rules independently of each other in par-
allel. The proposed method is effective especially when
evaluation functions for fuzzy rules learning are not
differentiable and then derivative-free optimization is
required. Numerical results indicate that the learning
method achieves proper convergence with derivative-
free optimization.

Keywords: fuzzy inference, fuzzy rules learning, fast op-

timization, parallel processing, derivative-free optimiza-
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1. Introduction

the solution space for finding the optimal fuzzy rules and
thus it makes the convergence speed fast in fuzzy rules
learning. a-FUZZI-ES learning is effective for tuning
each fuzzy rule with derivative-free optimization espe-
cially when the evaluation functions are not differentiable
and then derivative-based optimization methods cannot be
applied. It provides a way to tune fuzzy rules indepen-
dently of each other even with derivative-free optimiza-
tion. a-FUZZI-ES learning, however, requires the con-
dition that facts (inputs) are given by singletons and an-
tecedent fuzzy sets form a strong fuzzy partition.

This paper proposes a method to solve the above-
mentioned problem by extendirgrFUZZI-ES so as to
cope with facts given by fuzzy sets in the meaning of non-
singletons. The proposed method is naraeBUZZI-EX
(a-weight-based fuzzy-rule independent evaluations ex-
tended for fuzzy inputs) in this paper. A method is fur-
ther proposed for attaining fast fuzzy-rules learning by ap-
plying a-FUZZI-EX. It is nameda-FUZZI-EX learning

Parallel fuzzy inference provides an effective schemeld-FUZZI-EX-based fuzzy-rule learning) in this paper.

to represent complex nonlinear systems with a numbefNumerical results demonstrate the proper convergence in
of fuzzy rules_ The fuzzy ru'es have been Often 0pt|' fUZZy I‘uleS Iea.rr"ng W|th de”va“ve-free 0pt|m|zat|0n a.nd
mized by learning algorithms. Especially when evaluationfacts given by fuzzy sets (non-singletons).

funptlons for fuzzy rules learning are not d_|ﬁerent|able, 2 Definitions and Preliminaries

derivative-free methods are adopted, including genetic al-

gorithms, particle swarm optimization, and artificial im-
mune systems.

learning have applied such optimization methods by usin
functions for evaluating overall performance of fuzzy sys-

For the following discussions, some definitions and

Conventional methods for fuzzy rulegPreliminaries are presented. Further details of each are
gdescribed in [2-4].

Definition 1 When a convex fuzzy sétin the universe of

tems. As the number of fuzzy rules increases, the searctiscourseX is defined by a continuous membership func-
space of their optimal parameters becomes larger. It ention pa(x) (x € X) and itsa-cuts (also calledr-level sets)
tails the deceleration of convergence speed in fuzzy rulegare all boundedhe reference point x3 of A is defined by

learning.
In order to solve the problem mentioned abowe,

FUZZI-ES (a-weight-based fuzzy-rule independent eval-
uations) has been proposed for evaluating fuzzy rules

independently of each other [1]. Moreover;FUZZI-
ES learning ¢-FUZZI-ES-based fuzzy-rule learning) has

using itsa-cutA, as follows:
/ u

X5 + X

Xi= e ke (1)

wherexy andx) denote the least upper and the greatest
lower bounds of\, respectively. [ ]

;O = maxpa(x), .

been proposed for fuzzy rules learning by the effectiveDefinition 2 Suppose that a convex fuzzy s&tn the uni-

use ofa-FUZZI-ES [1]. It can optimize fuzzy rules in-

verse of discours¥ is defined by a continuous member-

dependently of each other in parallel. Thereby, it at-ship functionua(x) (x € X) and itsa-cuts are all bounded.
tains fast fuzzy-rules learning with parallel processing.The fuzzy sefA is symmetric if and only if the following
a-FUZZI-ES learning also reduces the dimensionality of equation holds:
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N facts are given by singletons and antecedent fuzzy sets
a > I =x3, Vae(0,0may;, Omax= m)f:lXuA(X). (2)  form astrong fuzzy partition. The validity of the proposed

Here,x! andx denote the least upper and the greatestmethOd is mathematically proven.
Aa ot . . . .
lower bounds of thex-cut Ay of A, respectively. The For the following discussions, suppose that the condi

o . tions below are satisfied:
symbolx, represents the reference pointAafA convex ) . ) )
fuzzy set is callecisymmetric if and only if Eq. (2) does (1) Léarning data are given by the input-output pairs
not hold. - (P, Q«) (k=1,2,...,nq), whereR andQx respec-
tively denote the input and output fuzzy sets of the

Definition 3 Thegeneralized meaM ({xj, pj}; w) is de- learning data.
fined by . 1 (2a) The valuegg of an evaluation function for optimiz-
Z Dix? © ing fuzzy rules with(R, Qk) satisfies the condition
& 17 thatEx > 0. In this paper, the smaller value B&f in-
M({xj, pj}; @) = | — , Xjp>0, pj>0, (3) dicates higher performance in fuzzy rules learning.
Z Pj (3a) The compatibility degrepjx betweenP, and R is
=1 normalized as shown below:
wherex; denotes a real number in the universe of dis- . Pk 4
course angb; represents a real number used for the weight Pik= [ )
of xj. The symbokv denotes a real number to determine Z Pik
the property of the mean [2, 3]. [ | =1

_ In particular,pjx is defined by
3. Independent Evaluations of Each Fuzzy

Rule and Their Use for Fuzzy Rules Pike = SURKR 0 A pgy ()], (?)
Learning wherep (x) denotes the membership functionRf
This section first introduces parallel fuzzy inference for ~ andA represents the minimum operation.

the following discussions. Then, methods are proposedNote thatP andP can be multi-dimensional fuzzy sets in
for evaluating fuzzy rules independently of each other andhe following discussions.

for fuzzy rules learning. From Eq. (4), the equation below holds obviously:
3.1. Parallel Fuzzy Inference i Bk=1 . . . . .. ... ... .. (6
This paper treats the parallel fuzzy inference in the =1
form below: The valueE of the evaluation function for all the learn-
Rule 1: Ifxis P, thenyis Q. ing data in fuzzy rules optimization can be formulated by
Rule 2: Ifxis P> theny is Qo. using Eq. (6) as follows:

Ny

. . Ny n B B n Ny . B n .
Rul-en: If xis P theny is Qn. E:kZlEk: z lEkalka] _Z lz Ekpjk] _leej’

K=1 =1 k=1

Given fact: xis P. where 7
Consequencey is Q. g
. _ _ . e = zEkpjk. e 5]
Here, P; and P denote fuzzy sets in the universe of dis- K=1

courseX, whereasQ); and Q represent fuzzy sets in the LetL; be defined by

universe of discoursé. In particular,P; in the antecedent B AN & .

part of the fuzzy rule is calledn antecedent fuzzy set, Li= {<H‘_’ Q) | Pik >_0’ k__ 12..onab - (9)
whereasQ; in the consequent part of the fuzzy rule is For the following discussions, is represented by

calleda consequent fuzzy set. In this paperpj, Q;, and L= {(If’jk/,ij/)}, K=12..n4j,. . . .(10)

P are all defined by normal and convex fuzzy sets an%herend_j represents the number of the learning data in
their reference points are placed|[1]. The member- ’

= . ~ AN~ e :
ship functions ofP;, Qj, P, andQ are respectively de- l‘dr'ngfgausqolk =0, ke {k"| (R, Q) # L}, Eq. (8)

noted bypp, (X), o, (Y), Hs(X), ands(y), wherex € X Nd.|
andy € Y. For convenience in the following discussions, g = z EjwbBjk, - -« « « « « . . .. . (11)
the j-th fuzzy rule is represented I8;. K=1
3.2. Mathematical Derivation of a Method for whereE;,; denotes the valug, of the evaluation function

Independent Evaluations of Each Fuzzy Rule  used in optimizingR; with the learning datéPji, Qji)-

In this section, a method is proposed for evaluating In Eq. (11),Ejk Pjw is in the form ofE;, weighted by
fuzzy rules independently of each other in fuzzy rules Pjk- Such weighting on the basis of compatibility degrees
learning, especially with facts given by fuzzy sets (non-is calleda-weighting [1]. The value ofpjy indicates the
singletons). It is derived in a way that exterwd$-UZZI- degree to whictP;; belongs toP;. From these view-
ES. a-FUZZI-ES is effectual only under condition that points, it can be considered thay, divides out the value
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of Ejk among the adjacent fuzzy rules Bf. Therefore, algorithms are adopted for optimizing fuzzy rules inde-
the value ofej; can be regarded as the evaluation value ofpendently of each othera-FUZZI-EX learning can re-
R;. The valuesog; (j =1,2,...,n) can be obtained inde- duce the dimensionality of the solution space for finding
pendently of each other. ThIS property makes it possiblehe optimal fuzzy rules. These inherited properties are de-
to calculate the values ef (j =1,2,...,n) in paralleland tailed in [1].
leads to fast computing in fuzzy rule evaluations. In the case where learning data with singleton inputs
The above-mentioned method for fuzzy rule evalua-are given and antecedent fuzzy sets form strong fuzzy par-
tions is namedr-FUZZI-EX (a-weight-based fuzzy-rule tition of X, a-FUZZI-EX learning provides exactly the
independent evaluations extended for fuzzy inputs) in thissame performance as-FUZZI-ES learning. This is be-
paper. a-FUZZI-ES is a special case of-FUZZI-EX. causea-FUZZI-ES is a special case of-FUZZI-EX as
a-FUZZI-EX is equivalent tax-FUZZI-ES under the fol-  described in Section 3.2 and therRFUZZI-EX learning

lowing conditions [1]: is equivalent tax-FUZZI-ES learning in the case.
(1b) The antecedent fuzzy se®s(j = 1,2,...,n) form 4. Application of a-FUZZI-EX learning
a strong fuzzy partition. Namely, the following to Interval Prediction
equation is satisfied: a-FUZZI-EX learning is applied to interval prediction
n _1 12 for demonstrating its performance-GEMII (a-level-set
Z M () =1 . . ... ... .. (12 and generalized-mean-based inference with the proof of

J_:l . _ _ two-sided symmetry of consequences) [2—4] is adopted
(2b) The inputs of learning data are given by singletons. because it is effective to represent prediction intervals by

Unlike a-FUZZI-ES, a-FUZZI-EX allows to cope with > deduced consequences.

facts given by fuzzy sets (non-singletons) and does no#.1. a-GEMIl Specialized for Triangular

require the antecedent fuzzy sets to form a strong fuzzy Membership Functions

partition of X. a-GEMIl is applied to interval prediction, wherein

. QJ (j=1,2,...,n) are optimized byr-FUZZI-EX learn-
3.3. Fuzzy Rules Learning Based omr-FUZZI-EX ing. In the use otr-GEMII, antecedent and consequent

In this section, a fast method is proposed for fuzzy rulesfuzzy sets are set to be symmetric and are defined by tri-
learning by the effective use o-FUZZI-EX. The follow-  4ngylar membership functions for convenience in interval
ing equation holds becauE@ > 0 andpjp > 0: prediction. The following specializes the operationsin

e =0, j=12,. Ce . (13)  GEMI for triangular membership functions. The opera-
As can be found from Eqs (7) and 1®,is obtamed tional steps in the general form atGEMII are described
by the summation of the positive or zero values givenin [2, 3].
by ej. Accordingly, E can be minimized by decreas-  Under the condition thaPj, Q;, and P are normal
ing each value ofj (j =1,2,...,n). As discussed in and are defined by triangular membership functiams,
Section 3.2, the values @& (j = 1,2,...,n) can be cal- GEMIl can deduce consequences in the form of normal
culated independently of each other. Therefore, fuzzyfuzzy sets defined by triangular membership functions. In
rules can be tuned independently of each other in paralthe following discussion, note that the core of a fuzzy set
lel for their global optimization by minimizing the each is a singleton and is equal to its reference point when the
value ofej (j =1,2,...,n). a-FUZZI-EX attains fast fuzzy setis defined by a triangular membership function.
fuzzy-rules learning with hardware in parallel including Because a triangular membership function can be param-
GPGPUs (general-purpose graphics processing units) aneterized by its core and suppod;GEMIl deduces only
many-core CPUs (central processing units). the core and support of the consequence by the effective

In order to evaluat®;, the value of; is calculated by  use of itsar-cut based scheme [5]:
using the numbeng ; of the learning data ihj as shown  Deduction of cores: The coreyg. of Qis deduced by
in Eg. (11). When each fuzzy rule is required to be eval- Yoo = ({ijc pihL. ... . (15)

uated per one learning data, the following definition of _ ~
fuzzy rule evaluation can be used on behalgpf Here yos denotes the core ;. Moreover,p, represents

B e, the compatibility degree betwe@hande.

g =—-.. . (14)  Deduction of supports: The least upper boung and

The above-mentioned fuzzy-rules learning on the ba-gredest lower bounqﬂ of the supporQ of Q are de-
sis of a-FUZZI-EX is nameda-FUZZI-EX learning  duced by
(a-FUZZI-EX- baseq fu;zy rgle learning) .|n thIS' paper. yg — M({y“Q‘ +(1_yéc), i} w)— (1_yéc)7 (16)
a-FUZZI-EX learning inherits the practically impor-
tant properties ofr-FUZZI-ES learning including above- yé— M {yé —Y&e Pits @) +Yge, - - - - (17)

mentioned fast computing with hardware in parallel. The )
other properties are as followsy-FUZZI-EX learning wherey‘(‘g andyé represent the least upper and the great

provides a self-governing scheme of each fuzzy rule in itsest lower bounds of the suppdg; of Qj, respectively.
optimization. It is effective especially when evolutionary The functionM ({x;, pj}; w) is deflned by
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M({xj, pj}; @) =1—M({1—x;j, pj};@). . . (18) Inthe following, an AIS is specialized to the case where
The operation with is calledthe dual operationof M in ~ Prediction intervals are constructed byGEMIl on the
this paper. The value ab determines the support width basis ofa-FUZZI-EX learning. For basic studie®; (j =
of Q. In the general form ofr-GEMII, the value ofw ~ 1.2,...,n) are defined by symmetric fuzzy sets. Suppose
is automatically controlled on the basis of the relation that the values ofqe (j = 1,2,...,n) are precisely opti-
betwveenP andP; (j=1,2,...,n) in fuzzy constraints [3].  mized in advance and only the support width€Qgpf(j =
In this paper, the value ab is fixed to 1 for applying 1,2,...,n) are to be tuned with the AIS for interval pre-
a-GEMII to interval prediction. Thereby is determined  diction. Thereby, it is easier to confirm the effectiveness
only by 91' (j=1,2,...,n) and it can easily be used as a of a-FUZZI-EX learning with CWC because the effect of

prediction interval after optimizin®, (j = 1,2.....n). the quality in optimizing the cores is eliminated.

_ . In the AIS, antibodiesAbj; (j = 1,2,...,n; i =
Whenw =1, Egs. (19) and (20) respectively turn to 1,2,...,nap) are the candidates of the support width

Yo =Myg, Bitid), - - o oo (19 of Q). As the fuzzy rules are optimized independently

— Ay of each other in the same way, the process of the AIS
yé_M({yéj’ fird). .. (20) for tuning the support width of)j is representatively
The scheme ofi-GEMII for triangular membership func- Presented in the following:
tions is detailed in [2-5]. Step 1: Initialize Abji (i = 1,2,...,nap) with random
4.2. Coverage-Width-Based Criterion numbers.

Prediction intervals are required to be estimated so thaBtep 2: Evaluatébj; (i =1,2,...,nap) UsingEqyc.
they include observed daya(k=1,2,...,nq) while their ~ Step 3: Clone all antibodie&bji (i = 1,2,...,nap). The
widths are reduced to a great extent. In order to evaluate clones ofAbj; are represented I« (k=1,2,...,nc).
the prediction intervals, CWC (coverage-width-based cri-Step 4: MutateCiik (i = 1,2,...,nap; k=1,2,...,n¢) by
terion) was proposed in [6]. This study utilizes CWC for  adding a random number whose magnitude is propor-

optimizinggj (j=1,2,...,n) for interval prediction with tionfal to Ejhe value oECkWC ?]f Abj;. The]c r?]utation is
) X e A e performed so as to make the support of the consequent
i?]tgrl\zlg/ll.". The supporQ of Q is treated as a prediction fuzzy set incIu_ded iY. The probabilities of making
The numerical indexE.,. of CWC is defined by the the support width of the consequent fuzzy set larger
following equations: and smaller are equal.
E..— w (21) Step'5: Evaluate€ix (i = 1,2,...,nap; k=1,2,...,nc)
" o(c,n,a)’ usingEcuc.
1 Nd Step 6: Selectny, candidates with high performance
W= ——— Z(y“—yﬁ), (22) in the evaluation byE.. from Abj and Cjix (i =
W (& 1,2,...,npp; k=1,2.....nc).
1 M Step 7: Replace the antibodiabj; (i = 1,2,...,na) by
= > S (23 the candidates selected in Step 6.
K=t Step 8: Return to Step 3 if the predetermined termination
o(c,n,a) = T e (24) condition is not satisfied; otherwise finish the process.

In Eq. (22),y¢ andyf, respectively denote the least upper ©- Simulations: Interval Prediction by Using

and the greatest lower bounds of the prediction interval.  a-FUZZI-EX Learning

The symbolW represents the width of that is to be Numerical results are presented to demonstrate the per-
the space for. Eqg. (22) gives the normalized mean formance ofa-FUZZI-EX learning via its application to
prediction interval width (NMPIW). The symbaly in interval prediction. In order to clarify the effectiveness

Eq. (23) is defined by in contrast to conventional methods, a non-differentiable
5 o function for evaluating fuzzy rules is adopted and facts are
17 6 ) . .
= {0 gthe%isyg] . . . (25) given by fuzzy sets (non-singletons).

The value ofc in Eq. (23) presents the probability of 21 Simulation Conditions ,
the observed data included in the prediction intervals. 1€ simulations are performed under the following
It is called the prediction-interval coverage probabil- conditions:

ity (PICP). Because Eg. (23) includes the operation for iy The numbem of fuzzy rules is 21. The antecedent
counting the number of the observed data in the predic-  fyzzy setP; and the consequent fuzzy s@; of R;

tion interval, itis a step function and theref(EgNC is not are symmetric_ They are defined by triangu]ar mem-

differentiable. bership functions that satisfy Eq. (12). The cores

4.3. An Artificial Immune System for Interval xjC (j=1,2,...,n)of P (j =1,2,...,n) are respec-

Prediction with a-FUZZI-EX learning tively placed ak=0.05(j —1) (j =1,2,...,n). Inthe

For constructing prediction intervals, fuzzy rules are  simulations,P; (j = 1,2,...,n) are fixed and are not

optimized with an artificial immune system (AIS) [7, 8]. adjusted for basic studies. Only the support widths of

. : . . . . )20)
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Fig. 2. Numerical learning data.

Qj (i=1,2,...,n) are optimized by using-FUZZI-
EX learning.
(i) The input—output pairéXy, k) (k=1,2,...,nq) of nu-

Independent Fuzzy-Rule Evaluations for Fast Optimization

independently of each other by using the AIS. The
numbernp, of antibodies for each consequent fuzzy
setis 5. The antibodies are initialized by uniform ran-
dom numbers iff0,0.2]. The numben of clones of
each antibody is 5. The antibodies and the clones
are evaluated by usinB.... The values oW, n,
anda are set to 1.0, 20.0, and 1.0, respectively. The
mutation process for each clone is shown in the fol-
lowing: The values oE.,. for evaluatingAbj; and
Ciik (i=1,2,...,nap; k=1,2,...,nc) are normalized
with their maximum value in optimizing the width of
91' The normalized value is denoted By,.. Each

clone is mutated in the way that the valuefrmt is
added to or subtracted from the least upper or greatest
lower bounds of_gj, whereryt is a uniform random

number in[0,r},]. The value of , is adjusted so that
the same process as the mutation with on behalf

of Ecwelmt makes the least upper bound@f equal to

1 and/or its greatest lower bound equal to 0 under the
condition thaQj is symmetric in the rang®, 1] of Y.
Thereby, the mutation is performed so as to m@lj<e
included in the rang€d, 1] of Y. The AIS is iteratively
performed until 500 generations.

5.2. Numerical Results

The prediction intervals in some generations are shown
in Fig. 3. They are deduced by-GEMIl with B (k =
1,2,...,nq) given as facts.Fig. 3(a) depicts the predic-
tion intervals deduced with the initial fuzzy rules that are

merical learning data are generated by the followinggenerated by using random numbers as described in Sec-

equations:
Yk =0q(R) +rk, k=1,2,...,nq, (26)
q(x) = —3.2(x—0.5)2+0.9, (27)

wherery denotes the additional nois€ig. 1 depicts
the functionq(x). In order to confirm thatr-FUZZI-

tion 5.1.Fig. 3(b) shows the prediction intervals deduced
in the first generation. Subsequenfiygs. 3(c)-(f) show

the prediction intervals deduced in the other generations.
The number of generations is indicated below each of the
figures. As can be found iRigs. 3(b)-(f), a-GEMII de-
duces the prediction intervals so that the numerical learn-

EX learning leads to the proper optimization of fuzzy ing data are included in the intervals while the widths of

rules for interval predictiong(x) is defined so as to
have some shapes. As can be founBitn 1, g(x) has

the intervals are reduced to a great extent along with the
generations.

convex, increasing, and decreasing parts. The number The transitional changes &, in the learning are de-
ng of the numerical learning data is 151. The valuespijcted inFig. 4. As can be found from the figure, the val-

of % (k=1,2,...,nq) are placed at equal intervals
in [0,1]. The value ofr is given by a uniform ran-

ues ofE,. converge to small values along with the gener-
ations. AlthoughFig. 4 presents the transitional changes

dom number for a feasibility study and is generatedof CWC until 30 generations, it is confirmed that the val-

in [—0.05,0.05. Fig. 2 shows the numerical learn-

ues ofE.,. further decrease in 500 generations.

ing data generated under the above-mentioned con- From the above discussions,-FUZZI-EX learning
ditions. In order to confirm the proper convergence makes fuzzy rules properly converge. Therefore, it is

in fuzzy rules optimization bya-FUZZI-EX learn-

ing with facts given by fuzzy sets (non-singletons),
the inputxy of the numerical learning data is trans-

formed to the fuzzy set (non-singletoR). Here,

R (k=1,2,...,nq) are symmetric and their member-

found to be effective even when facts are given by fuzzy
sets (non-singletons).

6. Conclusion
A method has been proposed for evaluating fuzzy rules

X (k=1,2,...,nq), respectively. The support width
of B is 0.05.

(iii) As described in Section 4.3, the valuesyajjc (j =
1,2,...,n) are set byy(x}) (j = 1,2,...,n), respec-
tively. The widths ofgj (j=1,2,...,n) are adjusted

a-FUZZI-ES so as to cope with facts given by fuzzy sets
(non-singletons). The proposed method has been named
a-FUZZI-EX in this paper. This paper has further pro-
posed a method for fuzzy rules learning on the basis-of
FUZZI-EX. The method provides a way to optimize fuzzy
rules independently of each other in parallel. It has been

)20)
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Fig. 3. Transitional changes in interval prediction by usog-UZZI-EX learning andx-GEMII.

sets (non-singletons) to demonstrate the performance of
a-FUZZI-EX learning in contrast tar-FUZZI-ES learn-

ECWC

0 E I I L | | =
0 5 10 15 20 25 3
Generation

Fig. 4. Transitional changes of CWC.

C
o

named a-FUZZI-EX learning in this paper. a-FUZZI-

EX learning attains fast fuzzy-rules learning by parallel
processing hardware including GPGPUs and many-core
CPUs.a-FUZZI-EX learning is effective especially when
evaluation functions for fuzzy rules learning are not dif-
ferentiable and then the derivative-based methods cannot

ing. Numerical results have shown thatFUZZI-EX

learning leads to proper convergence in constructing the

prediction intervals.
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